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The ar t ic le  deals  with a hyperson ic  s t r e a m  of v iscous  nonequi l ibr ium-ionized  gas around 
blunt bodies .  

Th is  study is concerned  with a v iscous  s t r e a m  of nonequi l ibr ium-ionized a rgon  in which the following 
reac t ion  o c c u r s  [1]: 

A + e a ~ A * + e ,  A*+e~--A+ '--2e. (1) 

The  main  object  he re  is to analyze  the effect  of re laxa t ion  p r o c e s s e s  and of the t r a n s f e r  coeff ic ients ,  to 
va r ious  approx imat ions ,  on the flow field of the impac t  l aye r  and on the t he rma l  flux at  the su r face  of an 
i m m e r s a d  body. 

F o r  the solution of this p rob l em,  we wr i te  the fundamental  equations in a s y s t e m  of coordina tes  r e -  
f e r r e d  to the body and then p e r f o r m  a t r ans fo rma t ion  in accordance  with the well  known model  of  a thin 
impac t  l a y e r  [2]. 

D i s r ega rd ing  any t r a n s v e r s e  p r e s s u r e  va r i a t ion  and taking into account  the ambipo la r i ty  of the d i f -  

fusion p r o c e s s ,  we obtain 

~ (rpu) -k - ~  (rpv) = O, (2) 

Ou Oa d p O Q O u )  
ou (3) 

- pu ~ + pv = 0----ff pD + tn~ne., (4) 

pu 

p = pRT (1 -1- ~). 
(6) 

According  to [1], 

h,~ ~ ~ (1 (z) ( P  2Cs (KT)S/~ -L- 2 exp ( -~-. 1 ~. , (7) 
.kma: ' 1 ~c~ ai~ 

where  CE = 4 . 4 " 1 0  -3 m ~ / J  [3]. 

The Rankine--Hugoniot  re la t ions ,  supplemented by a cons t ra in t  on the degree  of ionization ( a ~  = as ) ,  
s e rve  as  the boundary conditions on the shock wave.  On the body we have 

u~. = 0 ,  v ~ = 0 ,  T~=const ,  cho=aE(T~, p). (8) 

We now cons ider  the flow n e a r  the s tagnat ion point on the f ront  sur face .  I t  is a s s u m e d  he re  that  all 

dependent v a r i a b l e s  in exp res s ions  (9) 

U=Ul~y)x, p=p=V2 (1--• (x/L)"], (9) 
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Fig. 1. Prof i les  of nonequilibrium " 
ionization (curves 1, 2) and of equil i -  
br ium ionization (curves 3, 4) a c ro s s  
the impact  l ayer ,  at-Ma=o = 15 
(curves 1, 3) and at Maoo = 17 (curves 
2,4); ~ and ~ are  dimensionless  
quantit ies.  

1 d - dT l dT 
'] -- (1 -i- g) 

with the following boundary conditions: 

~ = 0  

Here  

except the tangential components of velocity u and p re s su re  p, 
a re  functions of one var iable:  y. System (2)-(6) is then reduced 
to a sys tem of ord inary  differential equations. 

We introduce a var iable  ~ and express  u I as well as v in 
t e r m s  of f(7/) 

Y 

/V V= "}'.pdtj, u , =  t V= [,Ol); v--  V~ fO1) dy. (10) 
~} = Lp~lt,~ . 2 L.  L d q  

0 

We then change to dimensionless  var iab les  

R T  
v = I-~'  ~--  p -P = P ' T V~ - (11) o~" povL ' = -  

T h e  final fundamental sys tem of equations for the vicinity of the 
stagnation point becomes 

q~l d~d ( l _~)d(~, __ ~p d~dq 21 (p,. = 4p (1 • = O, (12) 

l d ( t d ~ )  - da rnon~. - 0 .  (13) 
'l~ d~ Sc d~ -'~- ̀ p~-~ P 

Z do: dr  ( 2 ) m~h,~ 0 (14) 
~l] Sc d~ d~ T -? ~ T ~ P 

qJ=O, a = aw, T -- Tw, 

q,--2, cz--czs, T - -  T s. 
(15) 

(16) 

(17, 
o 

/ = p~t/psF~ , Pr = 5R9/2~, Sc = WpD,. (18) 

In o r d e r  to solve this sys tem of equations, we must  know l ,  P r ,  and Sc as functions of the t he rmo-  
dynamic proper t ies  of the gas. For  calculating the t r ans fe r  coefficients which appear in (18), one usually 
expands the t e rm added to the equilibrium distribution function into a Sonin polynomial se r i e s  [4, 5 ]. Studies 
have shown that, for an analysis  of ionized hot gases  it is neces sa ry  that the dynamic viscosi ty  # be given 
to the second approximation and the thermal  conductivity ~ be given to the fourth approximation. Mean-  
while, both P2 and h4 have been calculated only for quiescent gases at equilibrium (for argon [4, 5] and for 
a i r  [6]) without any considerat ion given to the effects of ~ and ~4 on the gas -dynamic  aspects  of the flow. 

In our  study here  # and ;~ have been calculated to these h ighe r -o rde r  approximations for nonequili-  
br ium flow and sys tem (12)-(14) has been solved with the thus more  prec ise  values of  the t ransfer  coeffi-  
cients ,  but also with these coefficients based on the s impler  c lass ica l  theory [7] and for the case l = 1, 
P r  = 2 / 3 ,  and Sc = 1. Fo r  calculating Pt, Pc, hi, and ~4 we used the interact ion potentials for par t ia l ly  
ionized argon according to [5]. 

The resu l t s  of these calculat ions a re  shown in Figs .  1 and 2 for L = 0.04 m and T w = 2000~ for 
example,  with the pa rame te r s  of the oncoming s t r e a m M a ~  = 15 and 17 respect ive ly ,  poo = 100 N / m  2, and 

r = 10 -3. 

TABLE 1. Thermal  Flux at  the Wall Surface,  qw" 10-'~ W/m~ 

Ma~ 

14 
15 
16 
17 
18 

I calculated ~ k h  the transfer ~w- 10 -'~ 
I = t .  Pr = 2/3.  and [coefficients ac -  w ~ h  ~l and k2 
8r t " - '  -- " | c~ds  tO[7]  

3386 ~ 4239 4333 
3962 ] 4739 5254 
4692 52tl 5978 
5595 5941 6933 
6718 6933 8215 

with P2 and k 4 

4592 
5825 
6615 
7619 
8992 
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P ro f i l e s  of  the ionizat ion (a) and of the t e m -  
p e r a t u r e  (b) a c r o s s  the boundary l a y e r ,  a t  Ma.o = 17: 
1) ca lcula ted  with t r a n s f e r  coeff icients  accord ing  to 
the c l a s s i c a l  theory  [7], 2} wi th /~  and ~2, 3} with/~2 
and ;~4, 4) with I = 1 ,  P r  = 2 / 3 ,  and Sc = 1; ~ ,  T - T w ;  
and ~ a r e  d imens ion less  quanti t ies.  

The solution was obtained by the e l iminat ion method with i te ra t ions  p e r f o r m e d  on a model  BI~SM-4 
digital compute r .  In  o rde r  to save  compute r  t ime ,  tables  of t r a n s f e r  coeff icients  we re  s to red  in the 
m e m o r y  which had been calcula ted  beforehand to va r ious  approximat ions  and as functions of the t h e r m o -  
dynamic p r o p e r t i e s .  

In Fig. 1 a r e  shown prof i l es  of the nonequil ibr ium ionization (~) and of the equi l ibr ium ionization 
(~E) a c r o s s  the impac t  l aye r .  Obviously,  both prof i les  have quite d i f ferent  t rends .  

In Fig.  2 a r e  shown prof i l es  of  the nonequil ibrum ionization ~ and of the t e m p e r a t u r e  T a c r o s s  the 
boundary l a y e r ,  with the t r a n s f e r  coeff ic ients  ca lcula ted  to va r ious  approximat ions .  I t  is noteworthy that,  
a s  the t r a n s f e r  coeff ic ients  become m o r e  p r e c i s e ,  ~ and T s e e m  to i nc rea se  in the boundary l aye r ,  while 
ca lcula t ions  with l = 1, P r  = 2 / 3 ,  and Sc = 1 yield much  too high values  for  ~ and T, 

In Tab le  1 a r e  given the values  of the t he rma l  flux at  the wall  sur face  

q~ = : - -~  d T  t , o D j  5 ) da 
dy l~, . \ -~- RT -'- RTj --'dy 1~ (19) 

as  a function of the Mach number  Ma.o, and of the t r a n s f e r  coeff ic ients  ca lcu la ted  to var ious  approximat ions .  
Obviously,  m o r e  p r e c i s e  values  of  the t r a n s f e r  coeff icients  yield higher  values  for  the t he rma l  flux at the 

walt .  
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~E 
h = 5 R T ( I + ~ ) / 2  + ~ R T j  
R 
Tj 

N O T A T I O N  

is the a tom in its fundamental  s ta te ;  
is the a tom in an exci ted s ta te ;  
is  the s ing le -cha rge  ion; 
a r e  the space  coord ina tes ;  
a r e  the veloci ty  components  along the x, y axes  r e spec t ive ly ;  
zs the d imens ion less  t r a n s v e r s e  coordinate  a c r o s s  the impac t  l a y e r ;  
l S  

1S 

1S 

1S 

I S  

1S 

is 
is 
is  

the gas  ve loc i ty  in the oncoming s t r e a m ;  
the gas  p r e s s u r e ;  
the gas densi ty;  
the gas  t e m p e r a t u r e ;  
the degree  of gas ionization; 
the degree  of equi l ibr ium ionization; 
the speci f ic  enthalpy of the mix tu re ;  
the specif ic  gas  constant ;  
the ionizat ion t e m p e r a t u r e ;  
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T x  
K 
m a 

m e  

# 

DA 
~,~ 

~2, ~4 
Ma 
P r  
Sc 

l = P~/Ps~s  
q 

is the 
is the 
is the 
is the 
is the 
is ,the 
is the 
is the 

exci tat ion t empera tu re ;  
Bol tzmann constant;  
mass  of an atom; 
mass  of an e lec t ron ;  
ra te  of the ionization reac t ion;  
ra t io  of densi t ies  before  and just behind the shock wave; 
dynamic v iscos i ty ;  
thermal  conductivity;  

is the ambipolar  diffusivity;  
a re  the dynamic v iscos i ty  to the f i r s t  and to the second approximation respec t ive ly ;  
a re  the the rmal  conductivity to the second and to the fourth approximation respec t ive ly ;  
is the Mach number ;  
is the Prandt l  number ;  
is the Schmidt number ;  
is a d imensionless  p a r a m e t e r ;  
is tl/e thermal  flux. 

S u b s c r i p t s  

~o denotes the gas in the oncoming s t r eam;  
s denotes the conditions just  behind the shock wave; 
w denotes the body surface .  

1, 
2. 
3. 
4. 
5. 
6. 
7. 
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